Solar eclipse of March 29, 2006

From Wikipedia, the free encyclopedia
Solar eclipse of March 29, 2006
Totality from Side, Turkey
Map
Type of eclipse
NatureTotal
Gamma0.3843
Magnitude1.0515
Maximum eclipse
Duration247 s (4 min 7 s)
Coordinates23°12′N 16°42′E / 23.2°N 16.7°E / 23.2; 16.7
Max. width of band184 km (114 mi)
Times (UTC)
(P1) Partial begin7:36:50
(U1) Total begin8:34:20
Greatest eclipse10:12:23
(U4) Total end11:47:55
(P4) Partial end12:45:35
References
Saros139 (29 of 71)
Catalog # (SE5000)9521

A total solar eclipse occurred on March 29, 2006.[1][2] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

It was the second solar eclipse visible in Africa in just 6 months.

Visibility[edit]

Animated path

The path of totality of the Moon's shadow began at sunrise in Brazil and extended across the Atlantic to Africa, traveling across Ghana, the southeastern tip of Ivory Coast, Togo, Benin, Nigeria, Niger, Chad, Libya, and a small corner of northwest Egypt, from there across the Mediterranean Sea to Greece (Kastellórizo) and Turkey, then across the Black Sea via Georgia, Russia, and Kazakhstan to Western Mongolia, where it ended at sunset. A partial eclipse was seen from the much broader path of the Moon's penumbra, including the northern two-thirds of Africa, the whole of Europe, and Central Asia.

Observations[edit]

People around the world gathered in areas where the eclipse was visible to view the event. The Manchester Astronomical Society, the Malaysian Space Agency, the Astronomical Society of the Pacific, as well as dozens of tour groups met at the Apollo temple and the theater in Side, Turkey. The San Francisco Exploratorium featured a live webcast from the site, where thousands of observers were seated in the ancient, Roman-style theater.[3]

Almost all actively visited areas in the path of totality had perfect weather. Many observers reported an unusually beautiful eclipse, with many or all effects visible, and a very nice corona, despite the proximity to the solar minimum. The partial phase of the eclipse was also visible from the International Space Station, where the astronauts on board took spectacular pictures of the moon's shadow on Earth's surface. It initially appeared as though an orbit correction set for the middle of March would bring the ISS into the path of totality, but this correction was postponed.

The Paris Observatory sent a team of students and coordinators to Savalou, Benin. The team took clear images of the corona. A team of Williams College, Massachusetts did many experiments and took images of the corona on the Greek island of Kastellórizo with 3 minutes of totality, which is close to the coast of Turkey and the only place in the European Union covered by the path of totality. The Solar and Heliospheric Observatory also made auxiliary observations to compare images taken from space and from the ground[4][5][6]. Another research simulated the changing colours of the sky in the path of totality with a three-dimensional model while considering multiple scattering. Monte Carlo method was used in the experiment to predict the colour and brightness of the sky. In addition, the direct irradiation of the corona was also studied. The goal was to plan and optimise studies on incoming solar irradiance[7]. Russian scientists studied on coronal polarization in the Baksan River Gorge surrounded by snow mountains in the North Caucasus. The location has an altitude of 1,800 metres and is 25 kilometres from Mount Elbrus, the highest peak in Russia and also Europe[8].

Libya under Muammar Gaddafi was under sanctions because of bombing the Pan Am Flight 103 and had a strict alcohol ban. It was the least visited region around the Mediterranean. To promote tourism, the Libyan government mobilized 5 state-owned tourism companies to attract more tourists, and built a tent village that could accommodate 7,000 people in Waw an Namus inside the Sahara Desert with excellent observation conditions. However, it was only open to astronomers, while ordinary tourists were directed to Patan, near the border with Egypt. Despite Libya's desire to attract tourists from all over the world, Israelis were still banned from entering the country[9][10]. NASA scientists also did joint observation and research with Libyan scientists, taking images and videos[6][11].

A team of 20 people from the Chinese Astronomical Society [zh] took images of Baily's beads, corona and prominences in Sallum, Egypt. The weather conditions were good in Sallum and also neighbouring Libya. Then Egyptian President Hosni Mubarak, Minister of Defense Muhammad Tantawi and other officials also went there by helicopter and observed the eclipse with scientists and tourists[12][13].

Gallery[edit]

Satellite failure[edit]

The satellite responsible for SKY Network Television, a New Zealand pay TV company, failed the day after this eclipse at around 1900 local time. While SKY didn't directly attribute the failure to the eclipse, they said in a media release that it took longer to resolve the issue because of it, but this claim was rejected by astronomers. The main reason for the failure was because of an aging and increasingly faulty satellite.[14]

Related eclipses[edit]

Eclipses of 2006[edit]

This solar eclipse was preceded by the penumbral lunar eclipse on March 14, 2006.

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 139[edit]

Inex[edit]

Solar eclipses 2004–2007[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[15]

Solar eclipse series sets from 2004 to 2007
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 2004 April 19

Partial (south)
−1.13345 124 2004 October 14

Partial (north)
1.03481
129

Partial from Naiguatá
2005 April 08

Hybrid
−0.34733 134

Annular from Madrid, Spain
2005 October 03

Annular
0.33058
139

Total from Side, Turkey
2006 March 29

Total
0.38433 144

Partial from São Paulo, Brazil
2006 September 22

Annular
−0.40624
149

From Jaipur, India
2007 March 19

Partial (north)
1.07277 154

From Córdoba, Argentina
2007 September 11

Partial (south)
−1.12552

Saros 139[edit]

This eclipse is a member of saros series 139, repeating every 18 years, 11 days, 8 hours, containing 71 events. The series started with partial solar eclipse on May 17, 1501. It contains hybrid eclipses on August 11, 1627, through to December 9, 1825; and total eclipses from December 21, 1843, through to March 26, 2601. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The solar eclipse of June 13, 2132, will be the longest total solar eclipse since July 11, 1991, at 6 minutes, 55.02 seconds.

The longest duration of totality will be produced by member 39 at 7 minutes, 29.22 seconds on July 16, 2186.[16] After that date, the durations of totality will decrease until the series ends. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[17] Saros series eclipses occur during the Moon's ascending node (a term related to our equator and polar-naming conventions).

Series members 24–45 occur between 1901 and 2300
24 25 26

February 3, 1916

February 14, 1934

February 25, 1952
27 28 29

March 7, 1970

March 18, 1988

March 29, 2006
30 31 32

April 8, 2024

April 20, 2042

April 30, 2060
33 34 35

May 11, 2078

May 22, 2096

June 3, 2114
36 37 38

June 13, 2132

June 25, 2150

July 5, 2168
39 40 41

July 16, 2186

July 27, 2204

August 8, 2222
42 43 44

August 18, 2240

August 29, 2258

September 9, 2276
45

September 20, 2294

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125

June 10, 1964

March 28, 1968

January 16, 1972

November 3, 1975

August 22, 1979
127 129 131 133 135

June 11, 1983

March 29, 1987

January 15, 1991

November 3, 1994

August 22, 1998
137 139 141 143 145

June 10, 2002

March 29, 2006

January 15, 2010

November 3, 2013

August 21, 2017
147 149 151 153 155

June 10, 2021

March 29, 2025

January 14, 2029

November 3, 2032

August 21, 2036

Notes[edit]

  1. ^ "Total solar eclipse: World witnesses rare event". Bristol Herald Courier. 2006-03-30. p. 4. Retrieved 2023-10-25 – via Newspapers.com.
  2. ^ "There goes the sun". The Toronto Star. 2006-03-30. p. 3. Retrieved 2023-10-25 – via Newspapers.com.
  3. ^ Total Solar Eclipse: Live from Turkey in 2006
  4. ^ "Total Solar Eclipse 2006". European Space Agency. 30 March 2006. Archived from the original on 19 August 2015.
  5. ^ "Solar Eclipse on 29 March 2006". Solar and Heliospheric Observatory. Archived from the original on 17 July 2006.
  6. ^ a b "NASA Shares Solar Eclipses With the World". NASA. 28 March 2006. Archived from the original on 13 August 2015.
  7. ^ C. Emde, B. Mayer: Simulation of solar radiation during a total eclipse: a challenge for radiative transfer [28 August 2015]
  8. ^ "ВЗАИМОДЕЙСТВИЕ ПОЛЯРИЗАЦИОННОГО ИЗЛУЧЕНИЯ КОРОНЫ И ЗОРЕВОГО КОЛЬЦА 29.03.2006 г." (in Russian). IZMIRAN. Archived from the original on 27 February 2012.
  9. ^ Xu Haijing (30 March 2006). "利比亚:欢迎来看日全食" (in Chinese). Yangcheng Evening News. Archived from the original on 19 August 2015.
  10. ^ "欲靠"老天"打开局面 利比亚推出日全食旅游". China News Service (in Chinese). Sina news. 28 March 2005. Archived from the original on 19 August 2015.
  11. ^ "Solar Eclipse 2006 Video". NASA. nasamike.com. Archived from the original on 4 March 2016.
  12. ^ Meng Tie (1 April 2006). "我和埃及总统一起看日全食". Hangzhou Daily (in Chinese). Archived from the original on 24 September 2015.
  13. ^ "【图】埃及医生:穆巴拉克未"临床死亡"" (in Chinese). Xinhua News Agency. Archived from the original on 19 August 2015.
  14. ^ Press release by Sky TV. Solar eclipse interferes with satellite restoration Archived 2005-02-10 at the Wayback Machine Friday, 31 March 2006.
  15. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  16. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  17. ^ Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.

References[edit]

Photos:

External links[edit]

Media related to Solar eclipse of 2006 March 29 at Wikimedia Commons